This new 3D printer makes life-sized ear, muscle, and bone tissues from living cells


For the first time, scientists have used a 3D printer to produce life-sized body parts and tissues using living cells as the ‘ink’. Not only are these structures large and sturdy enough to be a viable replacement for the real thing – something that previous bioprinters have failed to do – they’re personalised and functional, not a ‘one size fits all’ cosmetic add-on.

While bioprinters have been used to print miniature or more simplistic replicas of organs – including brains and kidney tissues – so scientists can carry out research on them rather than on real ones (lab animals everywhere, rejoice), until now, no one’s been able to print something large, stable, and ‘alive’ enough to act as a reliable transplant.

One of the biggest hurdles has been in figuring out how to keep those cells alive through the printing process, and how to build structures that incorporate all the things that keep our organs running, such as blood vessels and vascular structures to maintain oxygen flow.

Atala and his team figured out how to overcome this by combining living cells extracted from transplant recipients with special types of plastics and gels that have been designed to mimic biological tissues, muscle, and cartilage. These materials provide the structure the 3D-printed body parts need while they’re surgically implanted, and once in place, the plastic and gel components fade away, leaving only biological materials.

So once these structures are implanted, they shed their artificial scaffolding, and then encourage the growth of living supports from the recipient’s body, such as new tissue, bone, or cartilage cells.

The researchers demonstrated their technology by making ear, bone, and muscle structures using living cells extracted from humans, rabbits, mice, and rats. They’re yet to test the implants on humans, but when they implanted human-sized ears under the skin of mice (yep, those poor mice), the ears retained their shape, grew new supporting cartilage, and maintained a healthy blood supply within two months.

Two weeks after the rats received 3D-printed muscle tissue, nerve cells started growing around it, and in a five-month trial, skull fragments implanted into rats had formed new bone tissue with a functioning blood supply. It’s still early days for the technology – and will be “early days” until the team can prove that it works in human trials – but things are looking promising.

[Science alert]